流。但随着改革的深入,人们发现为了使数学能被一般大众所接受而简单地降低内容难度,不但没有提高大众的数学水平,反而导致大众数学水平的整体下降。显然,数学课程不能以人人学会作为设置理念,否则将是没有终点的退却。美国在倡导“大众数学”后,数学教育质量严重滑坡,学生在国际测试中不能令人满意的表现,大众数学水平的整体下降,引起一些有识之士的担心。全美数学教师联合会在2000年4月出版的课程标准修订版中,明确提出了“公平需要对所有学生都有高要求并提供均等且优良的机会”。所以,“大众数学”不能以降低标准为代价,“公平”既表现在(高)标准的一致上,也表现在优良学习机会的一致上。
心理学的研究表明,对学生学习相对高深内容的期待,对培养学生的数学学习兴趣、增强他们的自信心有重要影响,因为人都有一种不甘示弱、接受挑战的心理倾向。如果认为必须降低内容水平才能适应学生的学习能力,这种心理暗示将使我们的下一代畏惧数学(他们会认为“我反正学不了,所以我也不必付出努力”),成为低要求的受害者。
值得注意的是,要明确“高标准”的含义。例如,我们不能认为要求学生理解用“关系”语言表述的函数概念就是高标准。只有符合学生认知发展水平、学生经过真正的努力能够达到的要求,才是“高标准”。课堂教学中,教师应当通过适当的方式让学生知道对数学学习的高标准。例如,不断地向学生提出有挑战性的学习任务;要求学生不仅记住事实和操作步骤,而且要思考并理解其原理;鼓励学生独立解答问题,探索用不同途径解答问题,并愿意坚持不懈地做出努力;出现错误时,要求学生不是改正答案了事,而是要思考出现错误的原因,善于从错误中学习;启发和鼓励学生使用类比、推广、特殊化等逻辑思考方法,自己尝试得出一些数学结论;经常要求学生反思自己的学习过程;等等。
三、“螺旋上升”的原则──这个螺旋该多大
为什么要螺旋式安排数学内容及其学习过程?主要还是考虑与学生心理发展水平相适应的问题,因为“学习从属于发展”。同时,数学概念可以在不同层次上得到表征,也为螺旋上升地安排学习内容提供了可能。例如,函数概念,可以直观地用描述性语言表征(初中阶段),也可以用集合与对应的语言表征(高中阶段),还可以用关系语言来表征(大学阶段)。如果学生的心理发展水平不够,还没有能力认识更多的细节、更本质的内涵,这时要采用螺旋式;如果学生的能力已经达到了,就不应人为割裂认识的链条,更何况“学习能够促进发展”。教学既要与学生思维发展水平相适应,又要尽最大努力将思维的“最近发展区”转化为“现实发展水平”。
心理学研究表明,人的智力与能力发展具有年龄特征。小学阶段处于从具体形象思维向抽象逻辑思维的过渡阶段;整个中学阶段以抽象逻辑思维占主导地位,但初中阶段主要是以经验型为主的抽象逻辑思维,高中阶段主要是以理论型为主
的抽象逻辑思维。其中,小学四年级(10~11岁)是从以具体形象成分为主要形式到以抽象逻辑成分为主要形式的转折点;初中二年级(13~14岁)是从经验型向理论性发展的开始;高中二年级前后(16~17岁),思维和智力发展基本成熟。显然,智力与能力发展的年龄特征,是考虑螺旋上升安排教学内容的主要依据。课程设计、教材编写以及课堂教学都要考虑年龄特征问题,根据学生发展的可能性,对学生提出适当的学习要求。不过,另一方面,我们应采取积极措施推动学生的发展,迁就学生的智力与能力水平,不积极地引导学生发展也是不正确的。正如陈省身先生说的,“学生习惯于算而不习惯于推理。我们不能因为有这个困难而把它(指推理)丢掉。正是有困难,才需要我们去教。”因此,螺旋上升地安排教学内容,也有一个适度的问题。
结合心理学成果及教学实践,从数学是一门逻辑性很强的学科,中学生已经有较高的逻辑思维发展水平,以及学生思维活动的连续性等方面考虑,我们认为,中学生有能力在一个相对连贯的系统中学习和掌握中学课程中的大部分内容,不需要人为地设置“螺旋”。特别是在中学,不应再在初中、高中两个阶段内再搞几个小螺旋。例如,平面几何内容不应把“实验”和“论证”分开,搞“通过实验获得一个猜想,逻辑证明且听下回分解”;解析几何也不要分为“必修”(直线和圆)和“选修”(圆锥曲线);统计、 概率的内容,从小学到中学搞四、五个循环更是没有必要。
在学习内容的安排中,重要但一直没有很好解决的是加强不同内容之间的联系性问题。数学学科的特点是不同分支有一定的独立性,但同时又有内在的紧密联系。代数、几何、统计、概率以及离散数学之间是相互联系的,而且数学概念可
上一页 [1] [2] [3] [4] [5] 下一页